Abstract

In recent years, an increasing number of proper motions have been measured for Galactic X-ray binaries. When supplemented with accurate determinations of the component masses, orbital period, and donor effective temperature, these kinematical constraints harbor a wealth of information on the system's past evolution. Here, we consider all this available information to reconstruct the full evolutionary history of the black hole X-ray binary XTE J1118+480, assuming that the system originated in the Galactic disk and the donor has solar metallicity. This analysis accounts for four evolutionary phases: mass transfer through the ongoing X-ray phase, tidal evolution before the onset of Roche-lobe overflow, motion through the Galactic potential after the formation of the black hole, and binary orbital dynamics due to explosive mass loss and possibly a black hole natal kick at the time of core collapse. We find that right after black hole formation, the system consists of a ~6.0-10.0 solar masses black hole and a ~1.0-1.6 solar masses main-sequence star. We also find that that an asymmetric natal kick is not only plausible but required for the formation of this system, and derive a lower and upper limit on the black hole natal kick velocity magnitude of 80 km/s and 310 km/s, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.