A key unmet need in the management of hemophilia A (HA) is the lack of clinically validated markers that are associated with the development of neutralizing antibodies to Factor VIII (FVIII) (commonly referred to as inhibitors). This study aimed to identify relevant biomarkers for FVIII inhibition using Machine Learning (ML) and Explainable AI (XAI) using the My Life Our Future (MLOF) research repository. The dataset includes biologically relevant variables such as age, race, sex, ethnicity, and the variants in the F8 gene. In addition, we previously carried out Human Leukocyte Antigen Class II (HLA-II) typing on samples obtained from the MLOF repository. Using this information, we derived other patient-specific biologically and genetically important variables. These included identifying the number of foreign FVIII derived peptides, based on the alignment of the endogenous FVIII and infused drug sequences, and the foreign-peptide HLA-II molecule binding affinity calculated using NetMHCIIpan. The data were processed and trained with multiple ML classification models to identify the top performing models. The top performing model was then chosen to apply XAI via SHAP, (SHapley Additive exPlanations) to identify the variables critical for the prediction of FVIII inhibitor development in a hemophilia A patient. Using XAI we provide a robust and ranked identification of variables that could be predictive for developing inhibitors to FVIII drugs in hemophilia A patients. These variables could be validated as biomarkers and used in making clinical decisions and during drug development. The top five variables for predicting inhibitor development based on SHAP values are: (i) the baseline activity of the FVIII protein, (ii) mean affinity of all foreign peptides for HLA DRB 3, 4, & 5 alleles, (iii) mean affinity of all foreign peptides for HLA DRB1 alleles), (iv) the minimum affinity among all foreign peptides for HLA DRB1 alleles, and (v) F8 mutation type.
Read full abstract