De novo donor-specific antibody (dnDSA) develops in 15–25% of renal transplant recipients within 5 years of transplantation and is associated with 40% lower graft survival at 10 years. HLA epitope matching is a novel strategy that may minimize dnDSA development. HLAMatchmaker software was used to characterize epitope mismatches at 395 potential HLA-DR/DQ/DP conformational epitopes for 286 donor–recipient pairs. Epitope specificities were assigned using single antigen HLA bead analysis and correlated with known monoclonal alloantibody epitope targets. Locus-specific epitope mismatches were more numerous in patients who developed HLA-DR dnDSA alone (21.4 vs. 13.2, p < 0.02) or HLA-DQ dnDSA alone (27.5 vs. 17.3, p < 0.001). An optimal threshold for epitope mismatches (10 for HLA-DR, 17 for HLA-DQ) was defined that was associated with minimal development of Class II dnDSA. Applying these thresholds, zero and 2.7% of patients developed dnDSA against HLA-DR and HLA-DQ, respectively, after a median of 6.9 years. Epitope specificity analysis revealed that 3 HLA-DR and 3 HLA-DQ epitopes were independent multivariate predictors of Class II dnDSA. HLA-DR and DQ epitope matching outperforms traditional low-resolution antigen-based matching and has the potential to minimize the risk of de novo Class II DSA development, thereby improving long-term graft outcome.