Highly active antiretroviral therapy (HAART) works effectively in inhibiting HIV replication in patients. However, the use of nucleoside reverse transcriptase inhibitors (NRTIs) often causes side effects of neuropathic pain, and its mechanism remains to be elucidated. Therefore, we aim to explore the mechanism of NRTIs-induced neuropathic pain at the transcriptome level. C57BL/6 J mice were given intraperitoneal injection of zalcitabine (ddC) or saline (control) for 2 weeks, during which the mechanical pain threshold of the mice was detected by von Frey test. Then the L3~L5 spinal segments of the mice were isolated and subsequently used for RNA sequencing (RNA-seq) on the last day of treatment. The mechanical pain threshold of mice given ddC decreased significantly. Compared with the control group, ddC caused significant changes in the expression of 135 genes, of which 66 upregulated and 69 downregulated. Enrichment analysis showed that the functions of these genes are mainly enriched in regulation of transcription, multicellular organism development, and cell differentiation, and the pathway is mainly enriched in the cGMP-PKG signaling pathway and AMPK signaling pathway. Furthermore, key genes such as Gabrd, Kcnd3, Npcd, Insr, Lypd6, Scd2, and Mef2d were also identified. These may serve as drug targets for the prevention or treatment of NRTI-induced neuropathic pain.
Read full abstract