Two enantiomers of carbovir, a carbocyclic analog of 2',3'-dideoxyguanosine, were compared with respect to their phosphorylation and the phosphorylation of their nucleotides by mammalian enzymes. 5'-Nucleotidase catalyzed the phosphorylation of (-)-carbovir, which is active against HIV (human immunodeficiency virus), but did not phosphorylate (+)-carbovir. (-)-Carbovir monophosphate was 7,000 times more efficient as a substrate for GMP kinase than was (+)-carbovir monophosphate. Pyruvate kinase, phosphoglycerate kinase, and creatine kinase phosphorylated both enantiomers of carbovir diphosphate at similar rates. Nucleoside-diphosphate kinase preferentially phosphorylated the (-)-enantiomer. Both enantiomers of carbovir triphosphate were substrates and alternative substrate inhibitors of HIV reverse transcriptase. Thus, the contrasting HIV-inhibitory activities of carbovir enantiomers were due to differential phosphorylation by cellular enzymes and not due to enantioselectivity of HIV reverse transcriptase.
Read full abstract