Changing the course of the human immunodeficiency virus type I (HIV-1) pandemic is a high public health priority with approximately 39 million people currently living with HIV-1 (PLWH) and about 1.5 million new infections annually worldwide. Broadly neutralizing antibodies (bnAbs) typically target highly conserved sites on the HIV-1 envelope glycoproteins (Envs), which mediate viral entry, and block the infection of diverse HIV-1 strains. But different mechanisms of HIV-1 resistance to bnAbs prevent robust application of bnAbs for therapeutic and preventive interventions. Here we report the development of a new database that provides data and computational tools to aid the discovery of resistant features and may assist in analysis of HIV-1 resistance to bnAbs. Bioinformatic tools allow identification of specific patterns in Env sequences of resistant strains and development of strategies to elucidate the mechanisms of HIV-1 escape; comparison of resistant and sensitive HIV-1 strains for each bnAb; identification of resistance and sensitivity signatures associated with specific bnAbs or groups of bnAbs; and visualization of antibody pairs on cross-sensitivity plots. The database has been designed with a particular focus on user-friendly and interactive interface. Our database is a valuable resource for the scientific community and provides opportunities to investigate patterns of HIV-1 resistance and to develop new approaches aimed to overcome HIV-1 resistance to bnAbs. HIResist is freely available at https://hiresist.ahc.umn.edu/.
Read full abstract