Global historical land use datasets have been widely used in global or regional environmental change studies. Historical pasture data are essential components of these spatially explicit global datasets, and their uncertainties have not been well evaluated. Using the livestock-based historical pasture dataset for the Tibetan Plateau (TP), we evaluated the uncertainties of these representative global historical land use datasets in pasture reconstruction for the TP over the past 300 years in terms of pasture area estimation and spatial pattern mapping. We found that only the Sustainability and the Global Environment (SAGE) dataset can roughly reflect the temporal and spatial characteristics of historical pasture changes on the TP. The History Database of the Global Environment (HYDE) version 3.2 and the Pongratz Julia (PJ) datasets overestimated pasture area for the TP dramatically, with a maximum area ratio of about 221% and 291%, respectively, and the Kaplan and Krumhardt 2010 (KK10) dataset underestimated pasture area for the TP dramatically, with a minimum area ratio of only 9%. As for the spatial pattern, all these global datasets overestimated the spatial scope of grazing activities obviously. The KK10 dataset unreasonably allocated pasture to forest areas in southeastern Tibet because only climate and soil factors were considered in assessing land suitability for grazing. Using population to estimate pasture area and only using natural factors to allocate pasture area into grids is unsuitable for the TP historical pasture reconstruction. In the future, more information directly related to grazing activities, e.g., the number of livestock and its spatial distribution, and social-cultural factors, including technology and diet, should be used for area estimation and spatial pattern mapping to improve the accuracy of pasture data in these global datasets.
Read full abstract