Temperature is one of the important parameters regulating the expression of virulence factors in bacteria. The global regulator, a histone-like nucleoid structuring protein (H-NS), is known to play a crucial role in this regulation. In the present study, we first clarified the role of H-NS in the temperature-dependent regulation of virulence factor production in Vibrio vulnificus, including that of the cytolytic toxin (V. vulnificus hemolysin: VVH) and the proteolytic enzyme (V. vulnificus protease: VVP). The expression of hns itself was subjected to temperature regulation, where hns was expressed more at 26 ℃ than at 37 ℃. VVH production and the expression of its gene vvhA were increased by disruption of the hns gene. H-NS appeared to affect the vvhA expression by the well-documented transcriptional silencing mechanism. On the other hand, hns disruption resulted in the reduction of VVP production and the expression of its gene vvpE. H-NS was suggested to positively regulate vvpE expression through the increase in the level of the rpoS mRNA. Moreover, H-NS was found to contribute to the survival of V. vulnificus in stressful environments. When compared to the wild type strain, the hns mutant exhibited reduced survival rates when subjected to acidic pH, hyperosmotic and oxidative stress.
Read full abstract