Cancer remains one of the most significant public health challenges worldwide. A widely recognized hallmark of cancer is the ability to sustain proliferative signaling, which is closely tied to various cell cycle processes. Centromere Protein A (CENPA), a variant of the standard histone H3, is crucial for selective chromosome segregation during the cell cycle. Despite its importance, a comprehensive pan-cancer bioinformatic analysis of CENPA has not yet been conducted. Data on genomes, transcriptomes, and clinical information were retrieved from publicly accessible databases. We analyzed CENPA's genetic alterations, mRNA expression, functional enrichment, association with stemness, mutations, expression across cell populations and cellular locations, link to the cell cycle, impact on survival, and its relationship with the immune microenvironment. Additionally, a prognostic model for glioma patients was developed to demonstrate CENPA's potential as a biomarker. Furthermore, drugs targeting CENPA in cancer cells were identified and predicted using drug sensitivity correlations and protein-ligand docking. CENPA exhibited low levels of gene mutation across various cancers. It was found to be overexpressed in nearly all cancer types analyzed in TCGA, relative to normal controls, and was predominantly located in the nucleus of malignant cells. CENPA showed a strong association with the cancer cell cycle, particularly as a biomarker for the G2 phase. It also emerged as a valuable diagnostic and prognostic biomarker across multiple cancer types. In glioma, CENPA demonstrated reliable prognostic potential when used alongside other prognostic factors. Additionally, CENPA was linked to the immune microenvironment. Drugs such as CD-437, 3-Cl-AHPC, Trametinib, BI-2536, and GSK461364 were predicted to target CENPA in cancer cells. CENPA serves as a crucial biomarker for the cell cycle in cancers, offering both diagnostic and prognostic value.
Read full abstract