The histone demethylase JMJD1A, which controls gene expression by epigenetic regulation of H3K9 methylation marks, functions in diverse activities, including spermatogenesis, metabolism, and stem cell self-renewal and differentiation. Here, we found that JMJD1A knockdown in prostate cancer cells antagonizes their proliferation and survival. Profiling array analyses revealed that JMJD1A-dependent genes function in cellular growth, proliferation and survival, and implicated that the c-Myc transcriptional network is de-regulated following JMJD1A inhibition. Biochemical analyses confirmed that JMJD1A enhances c-Myc transcriptional activity by upregulating c-Myc expression levels. Mechanistically, JMJD1A activity promoted recruitment of androgen receptor (AR) to the c-Myc gene enhancer and induced H3K9 demethylation, increasing AR-dependent transcription of c-Myc mRNA. In parallel, we found that JMJD1A regulated c-Myc stability, likely by inhibiting HUWE1, an E3 ubiquitin ligase known to target degradation of several substrates including c-Myc. JMJD1A (wild-type or mutant lacking histone demethylase activity) bound to HUWE1, attenuated HUWE1-dependent ubiquitination and subsequent degradation of c-Myc, increasing c-Myc protein levels. Furthermore, c-Myc knockdown in prostate cancer cells phenocopied effects of JMJD1A knockdown, and c-Myc re-expression in JMJD1A-knockdown cells partially rescued prostate cancer cell growth in vitro and in vivo. c-Myc protein levels were positively correlated with those of JMJD1A in a subset of human prostate cancer specimens. Collectively, our findings identify a critical role for JMJD1A in regulating proliferation and survival of prostate cancer cells by controlling c-Myc expression at transcriptional and post-translational levels.
Read full abstract