BackgroundSevoflurane (SEV) has been found to induce neurotoxicity and cognitive impairment, leading to the development of degenerative diseases. Protein kinase C delta (PRKCD) is upregulated in the hippocampus of SEV-treated mice and may be related to SEV-related neurotoxicity. However, the underlying molecular mechanisms by which SEV mediates neurotoxicity via PRKCD remain unclear. MethodsNormal mice and PRKCD knockout (KO) mice were exposed to SEV. Hippocampal neurons were isolated from mice hippocampal tissues. H&E staining was used for pathological morphology of hippocampal tissues, and NISSL staining was used to analyze the number of hippocampal neurons. The mRNA and protein levels were determined using quantitative real-time PCR, western blot, immunofluorescence staining and immunohistochemical staining. The mitochondrial microstructure was observed by transmission electron microscopy. Cell viability was detected by cell counting kit 8 assay, and ferroptosis was assessed by detecting related marker levels. The cognitive ability of mice was assessed by morris water maze test. And the protein levels of PRKCD, ferroptosis-related markers and Hippo pathway-related markers were examined by western bolt. ResultsSEV increased PRKCD expression and ferroptosis in hippocampal tissues of mice. Also, SEV promoted mouse hippocampal neuron injury by inducing ferroptosis via upregulating PRKCD expression. Knockout of PRKCD alleviated SEV-induced neurotoxicity and cognitive impairment in mice, and relieved SEV-induced ferroptosis in hippocampal neurons. PRKCD could inhibit the activity of Hippo pathway, and its knockdown also overturned SEV-mediated ferroptosis by activating Hippo pathway. ConclusionSEV could induce neurotoxicity and cognitive impairment by promoting ferroptosis via inactivating Hippo pathway through increasing PRKCD expression.