The local signaling mechanism which directly assembles and maintains glutamatergic synapses has not been well understood. Glutamatergic synapses are made of presynaptic and postsynaptic compartments with distinct sets of proteins. Theplanar cell polarity (PCP) pathwayis highly conserved and responsible for establishing and maintaining the cell and tissue polarity along the tissue plane. The six core PCP proteins form antagonizing complexes within the cells and asymmetric intercellular complexes across neighboring cells which regulate cell-cell interactions during planar polarity signaling. Accumulating evidence suggests that the PCP proteins play essential roles in glutamatergic synapse assembly, maintenance and function in the brain. This review summarizes the key evidence that PCP proteins may be responsible for the formation and stability of the vast majority of the glutamatergic synapses in hippocampus and medial prefrontal cortex, the progress in understanding the mechanisms of how PCP proteins assemble and maintain glutamatergic synapses and initial insights on how disruption of the function of the PCP proteins can lead to neurodegenerative, neurodevelopmental and neuropsychiatric disorders. The PCP proteins may be the missing pieces of a long-standing puzzle and filling this gap of knowledge may provide the basis for understanding many unsolved questions in synapse biology.
Read full abstract