Ethylene thiourea (ETU), a metabolite of the fungicide ethylene bisdithiocarbamate (EBDC), has received great concern because of its harmful effects. ETU-induced anorectal malformations (ARMs) in rat models have been reported and widely used in the study of ARMs embryogenesis. Dysplasia of the lumbosacral spinal cord (LSSC), pelvic floor muscles (PFMs), and hindgut (HG) during intrauterine life affects postoperative defecation in patients with ARMs. However, the underlying toxic effects of ETU and pathological mechanisms in the three defecation-related tissues of fetuses with ARMs have not been reported. Thus, this study aimed to elucidate the molecular mechanisms involved in ARMs, with a focus on the dysregulation of miR-200b-3p and its downstream target tropomodulin 3 (TMOD3). The mRNA and protein levels of miR-200b-3p and TMOD3 in LSSC, PFMs, and HG of fetal rats with ARMs were evaluated by reverse transcription quantitative polymerase chain reaction and Western blotting (WB) on embryonic day 17 (E17). Further, a dual-luciferase reporter assay confirmed their targeting relationship. Gene silencing and overexpression of miR-200b-3p and TMOD3 were performed to verify their functions in HEK-293 T cells. Fetal rats with ARMs also received intra-amniotic microinjection of Ad-TMOD3 on E15, and key molecules in nuclear factor kappa (NF-κB) signaling and apoptosis were evaluated by WB on E21. Abnormally high levels of miR-200b-3p inhibited TMOD3 expression by binding with its 3′-untranslated region, leading to the activation of the non-canonical NF-κB signaling pathway, which is critical in the maldevelopment of LSSC, PFMs, and HG in ARMs rats. Furthermore, miR-200b-3p triggered apoptosis by directly targeting TMOD3. Notably, intra-amniotic Ad-TMOD3 microinjection revealed that the upregulation of TMOD3 expression mitigates the effects of miR-200b-3p on the activation of non-canonical NF-κB signaling and apoptosis in fetal rat model of ARMs. A novel miR-200b-3p/TMOD3/non-canonical NF-κB signaling axis triggered the massive apoptosis in LSSC, PFMs, and HG of ARMs, which was restored by the intra-amniotic injection of Ad-TMOD3 during embryogenesis. Our results indicate the potential of TMOD3 as a treatment target to restore defecation.
Read full abstract