The upper part of the High Himalayan slab in north central Nepal is comprised of a thick layer-parallel sheet of biotite + muscovite + tourmaline ± garnet ± sillimanite ± cordierite leucogranite up to 3–4 km thick and dipping north at 5–20°. These strongly peraluminous magmas were emplaced into high temperature–low-pressure sillimanite and cordierite bearing gneisses, calc-silicates and rare amphibolites which were metamorphosed at temperatures of 600–650°C some time during the Oligocene–early Miocene. Parallel stringers of black xenolithic gneisses within the leucogranites suggest passive magmatic intrusion along fractures parallel to the schistosity in the country rocks. In the mountains of Cho Oyu, Gyachung Kang, Pumori, Lingtren and the base of the Everest massif, these leucogranites form part of a single structural horizon bounded at the top by the Lhotse Detachment, the lower of two N-dipping normal faults of the South Tibetan Detachment (STD) system, and below by the Khumbu Thrust (KT), an out-of-sequence fault which was partly responsible for the uplift, erosion and exhumation of the leucogranites. A model for the emplacement of these leucogranites is proposed, where they represent viscous minimum melts, produced by melting of a pelitic protolith, similar to the underlying sillimanite grade gneisses, through muscovite breakdown, either during fluid-absent melting at <750°C, or fluid-saturated melting at <650°C. These leucogranites may have intruded up to ∼40 km horizontally from their source, but were emplaced by hydraulic fracturing along multiple sills into recently metamorphosed high temperature–low pressure rocks of the middle crust. The entire mid-crustal region where the granites were formed and emplaced was later uplifted along the hangingwall of the Khumbu Thrust, and by the structurally lower Main Central Thrust (MCT) to their present position. The location of the leucogranites at the top of the slab, but never intruding across the STD normal faults and the complete lack of leucogranites further down the slab rule out frictional heating along the MCT as a viable heat source and also rule out diapirism as a viable emplacement mechanism. High radioactivity of the crustal source, percolation of fluid from the migmatitic source into sills and dykes during simple shear, heat focussing due to a large thermal conductivity contrast across the STD, and decompression during active low-angle normal faulting above, are all viable processes to explain leucogranite melting and emplacement.