The study of regions situated beyond the western margin of the present-day Indian plate (Afghanistan principally) point to the following facts: 1. (1) During the Late Precambrian—Early Paleozoic, stratigraphical continuity existed between western and central Iran, Central Afghanistan, Salt Range and western Pakistan. 2. (2) During the Paleozoic a similar epicontinental cover existed in central Afghanistan, Kashmir and Tibet, with Gondwana tillites and associated cold fauna, such as in India (Umaria); however, a so-called Hercynian zone exists also in northern Iran—Hindu Kush and northern Pamir: it exibits a Middle Paleozoic unconformity (Upper DevonianCarboniferous) on metamorphic Early Paleozoic. 3. (3) The end of the Paleozoic, is marked by: a fracturation of the basement of the Hercynian zone, with powerful volcanic eruptions at the northern part of Hindu Kush, Kashmir (Panjal trap) and also Nepal (Nar valley) the formation of a geosynclinal zone at the southern part of Hercynian zone (Turkman, Penjaw). 4. (4) During the Jurassic: the geosynclinal evolution of the Turkman—Penjaw furrow accelerated, with the accumulation of flysch, radiolarites, ophiolites, olistolites and incipient HP metamorphism. A general subduction took place followed by a Neocimmerian orogenic phase with overthrusting of the central Afghanistan ranges on the scar of the geosynclinal furrows. 5. (5) During the Cretaceous: the geosynclinal evolution ended: Lower Cretaceous lies unconformably on the folded Jurassic flysch. In eastern Afghanistan and northern Pakistan, during the Middle (?) or Upper Cretaceous, a new geosynclinal zone was created. 6. (6) During the Cenozoic, central Afghanistan was emerged; northwards, sedimentary basins were created along the Herat fault, with volcanic and magmatic activity. A southeastern geosynclinal furrow evolved with accumulation of flysch, ophiolites and finally molasse deposits (Katawas—Soleimans). Its western border began overthrusting, but this movement changed into a left lateral fault i.e., the presentday Chaman Arghandeh fault. Conclusion: Two major phases of dislocation took place during the geological history of Gondwana: the first one began during the Permian and ended in the Jurassic; the second one began during the Cretaceous and is still active. The important Eocimmerian orogenic phenomena, existing in the Central Afghanistan and northern Pakistan, took place at the edge of a Gondwana continental fragment, which was larger than the presentday Indian plate. Coeval phenomena may exist in the Himalayan region and perhaps in one of the ophiolitic sutures of Tibet.