The Late Palaeocene–Middle Eocene marine sedimentary sequence of the Himalayan foreland basin, represented by the rocks of Subathu Formation, is enriched with the presence of foraminifera, bryozoa, corals, gastropods, bivalves and so on within both carbonate and clastic dominant lithologies. The carbonate and the shale consist mainly of larger benthic foraminifera (LBF) and the assemblage is composed of Nummulites and Assilina along with the other skeletal and non-skeletal components. The presence of a palaeosol at the base of Subathu indicates a gap in sedimentation. The lithological and biotic assemblages along with the bed form, bed geometry and primary sedimentary features helped us to establish four facies associations, A, B, C and D, and have been corroborated with the shoreline migration (transgression/regression) history. The facies association-A, representing the basal horizons of Subathu Formation, indicates the onset of transgression and deposition in lagoonal condition with carbonaceous shale and oolitic ironstone, followed by the facies association-B and -C deposited in shallow marine shoreface. The uppermost unit, i.e., the medium- to coarse-grained sandstone (facies association-D) of Subathu Formation, represents a fall in relative sea level (progradational stacking pattern), whereas the underlying contact between the facies association-B and -C is represented by an aggradational stacking pattern between the siltstone and the shale, but certainly without exposing the shelf. Petrographic studies based on characteristic features such as framework constituent, the percentage of matrix and grains, nature of cementing material, textural features and fossil content help to deduce a distinct change in depositional setting from an open marine (shelf) to shoal, a lagoon that gradually grades to foreshore/beach environment. The study reveals that the basin has gone through a transgressive (facies association-A and -B), regressive (facies association-C) as well as distinct forced regressive (facies association-D) phase of shoreline migration history.
Read full abstract