Hantaan virus (HTNV) is a pathogenic orthohantavirus prevalent in East Asia that is known to cause hemorrhagic fever with severe renal syndrome (HFRS), which has a high fatality rate. However, a Food and Drug Administration (FDA)-approved vaccine is not currently available against this virus. Although inactivated vaccines have been certified and used in endemic regions for decades, the neutralizing antibody (NAb) titer induced by inactivated vaccines is low and the immunization schedule is complicated, requiring at least three injections spanning approximately 6 months to 1 year. Replication-competent vesicular stomatitis virus (VSV)-based vaccines provide prolonged protection after a single injection. In this study, we successfully engineered the HTNV glycoprotein (GP) in the VSV genome by replacing the VSV-G open reading frame. The resulting recombinant (r) rVSV-HTNV-GP was rescued, and the immunogenicity of GP was similar to that of HTNV. BALB/c mice immunized with rVSV-HTNV-GP showed a high titer of NAb against HTNV after a single injection. Notably, the cross-reactive NAb response induced by rVSV-HTNV-GP against Seoul virus (an orthohantavirus) was higher than that induced by three sequential injections of inactivated vaccines. Upon challenge with HTNV, rVSV-HTNV-GP-immunized mice showed a profoundly reduced viral burden in multiple tissues, and inflammation in the lungs and liver was nearly undetectable. Moreover, a single injection of rVSV-HTNV-GP established a prolonged immunological memory status as the NAbs were sustained for over 1 year and provided long-term protection against HTNV infection. The findings of our study can support further development of an rVSV-HTNV-GP-based HTNV vaccine with a simplified immunization schedule.
Read full abstract