Cohort and nested case-control (NCC) designs are frequently used in pharmacoepidemiology to assess the associations of drug exposure that can vary over time with the risk of an adverse event. Although it is typically expected that estimates from NCC analyses are similar to those from the full cohort analysis, with moderate loss of precision, only few studies have actually compared their respective performance for estimating the effects of time-varying exposures (TVE). We used simulations to compare the properties of the resulting estimators of these designs for both time-invariant exposure and TVE. We varied exposure prevalence, proportion of subjects experiencing the event, hazard ratio, and control-to-case ratio and considered matching on confounders. Using both designs, we also estimated the real-world associations of time-invariant ever use of menopausal hormone therapy (MHT) at baseline and updated, time-varying MHT use with breast cancer incidence. In all simulated scenarios, the cohort-based estimates had small relative bias and greater precision than the NCC design. NCC estimates displayed bias to the null that decreased with a greater number of controls per case. This bias markedly increased with higher proportion of events. Bias was seen with Breslow's and Efron's approximations for handling tied event times but was greatly reduced with the exact method or when NCC analyses were matched on confounders. When analyzing the MHT-breast cancer association, differences between the two designs were consistent with simulated data. Once ties were taken correctly into account, NCC estimates were very similar to those of the full cohort analysis.
Read full abstract