Microcystin is a cyanobacterial hepatotoxin of global concern. Understanding the environmental factors that cause high concentrations of microcystin is crucial to the development of lake management strategies that minimize harmful exposures. While the literature is replete with studies linking cyanobacterial production of microcystin to changes in various nutrients, abiotic stressors, grazers, and competitors, no single biotic or abiotic factor has been shown to be reliably predictive of microcystin concentrations in complex ecosystems. We performed random forest regression analyses with 16S and 18S rRNA gene sequencing data and environmental data to determine which putative ecological drivers best explained spatiotemporal variation in total microcystin and several individual congeners in a eutrophic freshwater reservoir. Model performance was best for predicting concentrations of the congener MC-LR, with ca. 88% of spatiotemporal variance explained. Most of the variance was associated with changes in the relative abundance of the cyanobacterial genus Microcystis. Follow-up RF regression analyses revealed that factors that were the most important in predicting MC-LR were also the most important in predicting Microcystis population dynamics. We discuss how these results relate to prevailing ecological hypotheses regarding the function of microcystin.