A series of superhydrophobic polycarbonate porous monoliths modified with metal organic framework (Z8/PC) were firstly fabricated through a facile thermally impacted non-solvent induced phase separation method for efficient selective oil/water separation. The performance of the monoliths on oil/water separation was evaluated in terms of selectivity, equilibrium adsorption capacity, corrosion resistance, kinetics, and circulation. The results showed that the use of ZIF-8 significantly compensated for the shortage of pure monolith. Compared with pure PC monolith, the hydrophobic angle of the Z8/PC-2 monolith promoted from 136.18° to 154.25° due to the micro-nano flower surface. Meanwhile, the Z8/PC-2 monolith displayed a more intricate and continuous interconnected 3D hierarchical micro-nano structure, which possessed the monolith a higher specific surface area of 146.84 m2 g−1 and porosity of 89.5%. What’s more, more superior oil/water separation abilities of Z8/PC-2 monolith were manifested by the selective removal of oil or organic solvent from water within 30s, high equilibrium adsorption capacity, and excellent corrosion resistance. In addition, the ten-cycle regeneration of porous monoliths via centrifugation or evaporation displayed additional attractiveness. Therefore, porous Z8/PC monolith will be a promising candidate for the efficient selective oil/water separation of oil spills and organic solvents.