The main direction in solving the problem of increasing the reliability of field equipment, is the creation of new steels with higher resistance to corrosion-mechanical destruction. Currently, to produce oil and gas pipeline systems, low-carbon, low-alloy steels are used, in which lath carbide-free bainite is formed when quenched in water. Such a structure provides a combination of high strength and resistance to brittle fracture. However, issues of increasing corrosion resistance are still open. The purpose of this work is to identify the structural condition of low-carbon, low-alloy, pipe steels, providing a combination of high mechanical properties with increased corrosion resistance in oilfield environments. The studies were carried out on the latest generation 08KhFA, 08KhFMA and 05KhGB steels, most popular when manufacturing oil and gas pipelines. Samples for the study were cut from the pipes and quenched from the austenite region in water, which formed the structure of lath carbide-free bainite. The quenched samples were tempered at temperatures of 200, 300, 400, 500, 600, and 700°C. To identify the relationship between the morphology of bainite structures and their properties, the samples after quenching and tempering at each temperature, were subjected to metallographic analysis, X-ray diffraction analysis, mechanical tests, and corrosion resistance tests. The work shows the sequence of structure transformation, temperature ranges of phase and structural transformations, changes in mechanical properties, and corrosion resistance that occur during tempering of lath carbide-free low-carbon bainite. It is shown that tempering of lath carbide-free bainite (08KhFA, 08KhMFA and 05KhGB steels) does not affect the rate of carbon dioxide corrosion. It has been found that medium tempering forms the structural condition of carbide-free low-carbon lath bainite providing a combination of high mechanical properties and high corrosion resistance in oil field environments. For each of the steels under study, the authors give recommended heat treatment modes.