Next article Recurrence Relations for the Coefficients in Jacobi Series Solutions of Linear Differential EquationsStanisław LewanowiczStanisław Lewanowiczhttps://doi.org/10.1137/0517074PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAboutAbstractA method is presented for obtaining recurrence relations for the coefficients in Jacobi series solutions of linear ordinary differential equations with polynomial coefficients.[1] C. W. Clenshaw, The numerical solution of linear differential equations in Chebyshev series, Proc. Cambridge Philos. Soc., 53 (1957), 134–149 18,516a 0077.32503 CrossrefGoogle Scholar[2] David Elliott, The expansion of functions in ultraspherical polynomials, J. Austral. Math. Soc., 1 (1959/1960), 428–438 23:A1997 0099.28603 CrossrefGoogle Scholar[3] A. Erdelyi, Higher Transcendental Functions, McGraw-Hill, New York, 1953 Google Scholar[4] L. Fox, Chebyshev methods for ordinary differential equations, Comput. J., 4 (1961/1962), 318–331 24:B2554 0103.34203 CrossrefISIGoogle Scholar[5] L. Fox and , I. B. Parker, Chebyshev polynomials in numerical analysis, Oxford University Press, London, 1968ix+205, England 37:3733 Google Scholar[6] K. O. Geddes, Symbolic computation of recurrence equations for the Chebyshev series solution of linear ODE'S, Proc. 1977 MACSYMA Users' Conference, Univ. of California, Berkeley, CA, 1977, 405–423, NASA CP-2012 Google Scholar[7] T. S. Horner, Recurrence relations for the coefficients in Chebyshev series solutions of ordinary differential equations, Math. Comp., 35 (1980), 893–905 81d:65038 0446.65040 CrossrefISIGoogle Scholar[8] S. Lewanowicz, Construction of a recurrence relation of the lowest order for coefficients of the Gegenbauer series, Zastos. Mat., 15 (1976), 345–396 54:6527 0357.33006 Google Scholar[9] S. Lewanowicz, Construction of the lowest-order recurrence relation for the Jacobi coefficients, Zastos. Mat., 17 (1983), 655–675 85d:33030 0591.65089 Google Scholar[10] Stanisław Lewanowicz, Recurrence relations for hypergeometric functions of unit argument, Math. Comp., 45 (1985), 521–535 86m:33004 0583.33005 CrossrefISIGoogle Scholar[11] Y. L. Luke, The Special Functions and their Approximations, Academic Press, New York, 1969 Google Scholar[12] A. Magnus, Application des récurrences au calcul d'une classe d'intégrales, Rep., 71, Inst. Math. Pure Appl., Univ. de Louvain, 1974 Google Scholar[13] A. G. Morris and , T. S. Horner, Chebyshev polynomials in the numerical solution of differential equations, Math. Comp., 31 (1977), 881–891 56:1729 0386.65040 CrossrefISIGoogle Scholar[14] O. Oluremi Olaofe, On the Tchebyschev method of solution of ordinary differential equations, J. Math. Anal. Appl., 60 (1977), 1–7 10.1016/0022-247X(77)90043-9 56:1724 0363.65065 CrossrefISIGoogle Scholar[15] Stefan Paszkowski, Zastosowania numeryczne wielomianów i szeregów Czebyszewa, Państwowe Wydawnictwo Naukowe, Warsaw, 1975, 481– 56:13534 0423.65012 Google Scholar[16] N. Robertson, An ALTRAN program for finding a recursion formula for the Gegenbauer coefficients of a function, Spec. Rep., SWISK 11, Nat. Res. Inst. for Math. Sci., Pretoria, 1979 Google Scholar[17] Jet Wimp, Computation with recurrence relations, Applicable Mathematics Series, Pitman (Advanced Publishing Program), Boston, MA, 1984xii+310 85f:65001 Google ScholarKeywordsJacobi seriesJacobi coefficientsrecurrence relationsdifference operatorslinear differential equation Next article FiguresRelatedReferencesCited byDetails Descriptions of fractional coefficients of Jacobi polynomial expansions18 April 2022 | The Journal of Analysis, Vol. 30, No. 4 Cross Ref On Jacobi polynomials and fractional spectral functions on compact symmetric spaces4 January 2021 | The Journal of Analysis, Vol. 29, No. 3 Cross Ref Spectral Solutions for Differential and Integral Equations with Varying Coefficients Using Classical Orthogonal Polynomials17 July 2018 | Bulletin of the Iranian Mathematical Society, Vol. 45, No. 2 Cross Ref On the coefficients of differentiated expansions and derivatives of chebyshev polynomials of the third and fourth kindsActa Mathematica Scientia, Vol. 35, No. 2 Cross Ref On the construction of recurrence relations for the expansion and connection coefficients in series of Jacobi polynomials6 January 2004 | Journal of Physics A: Mathematical and General, Vol. 37, No. 3 Cross Ref On the coefficients of differentiated expansions and derivatives of Jacobi polynomials8 April 2002 | Journal of Physics A: Mathematical and General, Vol. 35, No. 15 Cross Ref The ultraspherical coefficients of the moments of a general-order derivative of an infinitely differentiable functionJournal of Computational and Applied Mathematics, Vol. 89, No. 1 Cross Ref On the legendre coefficients of the moments of the general order derivative of an infinitely differentiable functionInternational Journal of Computer Mathematics, Vol. 56, No. 1-2 Cross Ref Evaluation of Bessel function integrals with algebraic singularitiesJournal of Computational and Applied Mathematics, Vol. 37, No. 1-3 Cross Ref Properties of the polynomials associated with the Jacobi polynomials1 January 1986 | Mathematics of Computation, Vol. 47, No. 176 Cross Ref Volume 17, Issue 5| 1986SIAM Journal on Mathematical Analysis History Submitted:15 April 1985Published online:17 July 2006 InformationCopyright © 1986 Society for Industrial and Applied MathematicsKeywordsJacobi seriesJacobi coefficientsrecurrence relationsdifference operatorslinear differential equationMSC codes42C1039A7065L0565L10PDF Download Article & Publication DataArticle DOI:10.1137/0517074Article page range:pp. 1037-1052ISSN (print):0036-1410ISSN (online):1095-7154Publisher:Society for Industrial and Applied Mathematics
Read full abstract