The gears in the high-speed heavy-duty gearbox of the high-speed train are typical high-speed heavy-duty gears. Combined with the transmission principle and structural characteristics of the high-speed train drive gearbox, to ensure adequate lubrication of meshing gears and bearings, an optimization of the lubricating oil flow inside the gearbox was conducted. The oil and gas two-phase flow model inside the gearbox adopts the VOF model, and the turbulence model adopts the standard κ-ε model. Fluent is used for simulation calculation. The results show that the exhaust port position of the gearbox has little effect on the flow of lubricating oil inside the gearbox; the overall pressure distribution inside the gearbox is relatively uniform, with higher pressure only at the meshing gears; the distribution of lubricating oil inside the gearbox is related to the rotation of the gears, and the flow velocity of lubricating oil is mainly affected by the rotation of the gears, with the maximum flow velocity appearing around the gears; the flow of lubricating oil inside the gearbox meets the lubrication requirements of the gearbox. These results provide support for the lubrication design, flow channel structure improvement, and effectiveness evaluation of high-speed train transmission gearboxes.