The vortex-induced forces on an extruded cylinder with a span of two diameters representative of a finite segment of a non-tapered wind turbine tower at a very high Reynolds number (Re = 8.0×106) are numerically investigated using an incompressible Navier-Stokes flow solver with an Improved Delayed Detached Eddy Simulation (IDDES) turbulence model and correlation-based boundary layer transition modelling. The solution shows spanwise correlated structured vortex shedding with the Strouhal number St = 0.48. The boundary layer transition is found to occur at θ transition = 70 ◦ , and boundary layer separation is found to occur at θ separation = 120 ◦ . Results from the grid dependency study strongly imply that when using IDDES, the Strouhal number converges to higher values than previously reported by the literature as the grid is refined, with results ranging from St ∼ 0.44 using a grid with 4.2 × 106 cells, to St = 0.48 for the finest considered grid with 33 × 106 cells. This behaviour is not seen for URANS, where St = 0.33 for the finest grid.