BackgroundPseudomonas aeruginosa is an opportunistic pathogen in the health-care systems and one of the primary causative agents with high mortality in hospitalized patients, particularly immunocompromised. The limitation of effective antibiotic administration in multidrug-resistant and extensively drug-resistant P. aeruginosa isolates leads to the development of nosocomial infections and health problems. Quorum sensing system contributes to biofilm formation, expression of bacterial virulence factors, and development of drug resistance, causing prolonged patient infections. Therefore, due to the significance of the quorum sensing system in increasing the pathogenicity of P. aeruginosa, the primary objective of our study was to investigate the frequency of quorum sensing genes, as well as the biofilm formation and antibiotic resistance pattern among P. aeruginosa strains.MethodsA total of 120 P. aeruginosa isolates were collected from different clinical specimens. The disk diffusion method was applied to detect the antibiotic resistance pattern of P. aeruginosa strains. Also, the microtiter plate method was carried out to evaluate the biofilm-forming ability of isolates. Finally, the frequency of rhlI, rhlR, lasI, and lasR genes was examined by the polymerase chain reaction method.ResultsIn total, 88.3% P. aeruginosa isolates were found to be multidrug-resistant, of which 30.1% had extensively drug-resistant pattern. The highest and lowest resistance rates were found against ceftazidime (75.0%) and ciprofloxacin (46.6%), respectively. Also, 95.8% of isolates were able to produce biofilm, of which 42.5%, 33.3%, and 20.0% had strong, moderate, and weak biofilm patterns, respectively. The frequency of quorum sensing genes among all examined strains was as follows: rhlI (81.6%), rhlR (90.8%), lasI (89.1%), and lasR (78.3%). The most common type of quorum sensing genes among multidrug-resistant isolates were related to rhlR and lasI genes with 94.3%. Furthermore, rhlI, rhlR, and lasI genes were positive for all extensively drug-resistant isolates. However, the lasR gene had the lowest frequency among both multidrug-resistant (83.0%) and extensively drug-resistant (90.6%) isolates. Moreover, rhlR (94.7%) and lasR (81.7%) genes had the highest and lowest prevalence among biofilm-forming isolates, respectively.ConclusionOur findings disclosed the significantly high prevalence of drug resistance among P. aeruginosa isolates. Also, the quorum sensing system had a significant correlation with biofilm formation and drug resistance, indicating the essential role of this system in the emergence of nosocomial infections caused by P. aeruginosa.