Architecture form has been one of the hot areas in the field of architectural design, which reflects regional architectural features to some extent. However, most of the existing methods for architecture form belong to the field of qualitative analysis. Accordingly, quantitative methods are urgently required to extract regional architectural style, identify architecture form, and to and further provide the quantitative evaluation. Based on machine learning technology, this paper proposes a novel method to quantify the feature, form, and evaluation of regional architectures. First, we construct a training dataset—the Chinese Ancient Architecture Image Dataset (CAAID), in which each image is labeled by some experts as having at least one of three typical features such as “High Pedestal”, “Deep Eave” and “Elegant Gable”. Second, the CAAID is used to train our neural network model to identify three kinds of architectural features. In order to reveal the traditional forms of regional architecture in Hubei, we built the Hubei Architectural Heritage Image Dataset (HAHID) as our object dataset, in which we collected architectural images from four different regions including southeast, northeast, southwest, and northwest Hubei. Our object dataset is then fed into our neural network model to predict the typical features for those four regions in Hubei. The obtained quantitative results show that the feature identification of the architectural form is consistent with that of regional architectures in Hubei. Moreover, we can observe from the quantitative results that four geographic regions in Hubei show variation; for instance, the feature of the ‘elegant gable’ in southeastern Hubei is more evident, while the “Deep Eave” in the northwest is more evident. In addition, some new building images are selected to feed into our neural network model and the output quantitative results can effectively identify the corresponding feature style of regional architectures in Hubei. Therefore, our proposed method based on machine learning can be used not only as a quantitative tool to extract features of regional architectures, but also as an effective approach to evaluate architecture forms in the urban renewal process.