Introduction: A novel attempt to degrade alizarine yellow R (AYR) by lead dioxide (PbO2)/ neodymium (Nd) coated Ti anode was investigated. Method: Ti/Zr-SnO2/PbO2-Nd electrode showed high oxygen evolution potential, high current density, and neutral conditions, which favored the degradation of AYR. The PbO2-Nd layer on Ti/Zr-SnO2 was further characterized by scanning electron microscopy, and X-ray diffraction analysis, and X-ray photoelectron spectroscopy. The electrochemical properties of Ti/Zr- SnO2/PbO2-Nd electrode were evaluated by cyclic voltammetry, AC impedance spectroscopy, and accelerated life test. Result: The relatively higher oxygen evolution overpotential (~1.80 V) of the developed electrode can effectively suppress the occurrence of surface side reactions and oxygen evolution. A relatively lower charge transfer resistance (Rct, 18.0 Ω) of Ti/Zr-SnO2/PbO2-Nd electrode could be found. The Ti/Zr-SnO2/PbO2-Nd electrode exhibited an accelerated lifetime of 110 min under a very high current density of 10,000 A/m2. The doping of Nd could produce loosely-stacked sheet-like structures, thus, the number of active sites on the electrode surface increases. Conclusion: Moreover, an outstanding conductivity of Ti/Zr-SnO2/PbO2-Nd electrode was obtained, which favored the electron transfer and catalytic activity of the modified electrode. The Ti/Zr-SnO2/PbO2-Nd electrode exhibited improved electrochemical performances and higher oxygen evolution potential, and the highest oxygen evolution potential is 1.80 V. Under the current density of 30 mA/cm2, the electrocatalytic degradation of 92.3% could be achieved in 180 min. The electrochemical oxidation of AYR at the Ti/Zr-SnO2/PbO2-Nd electrode proved to be feasible and effective, indicating that it might be used for the elimination of AYR from wastewater. conclusion: The electrochemical oxidation of AYR at the Ti/Zr-SnO2/PbO2-Nd electrode proved to be feasible and effective, indicating that it might be used for the elimination of AYR from wastewater.