Habitat fragmentation is a key factor causing variation in important mating system parameters in plants, but its effect is variable. We studied mating system variation among 276 native trees from 37 populations of Eucalyptus pauciflora from Tasmania. We assayed 10 microsatellite loci from 1359 open-pollinated progeny from these trees. Across Tasmania the species’ mating system was characterised by a high outcrossing rate (tm = 0.90) but moderate bi-parental inbreeding (tm–ts = 0.16) and moderate correlated paternity (rP = 0.20) in comparison to other eucalypt species. Despite significant differences in outcrossing rate and correlated paternity among populations, this variation was not correlated with fragmentation. Nevertheless, fragmentation was inversely correlated with the number of germinants per gram of seed capsule content. Outcrossing rate had been reported previously to decrease with increasing altitude in mainland populations of E. pauciflora, but this was not the case in Tasmania. However, a small but significant decrease in correlated paternity occurred with increasing altitude and a decrease in bi-parental inbreeding with increasing altitude was evident in fragmented populations only. It is argued that strong, but incomplete self-incompatibility mechanisms may buffer the mating system from changes in population density and pollinators. While seed yields from highly fragmented populations were reduced, in most cases the seed obtained is unlikely to be more inbred than that from non-fragmented populations and, thus, is likely to be as suitable for use in local forest restoration.
Read full abstract