The purpose of this work is to establish a Lyapunov-type inequality for the following dynamic equation \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$S_n^\ riangle (t,x(t))+u(t)x^{p}(t)=0$$\\end{document}Sn▵(t,x(t))+u(t)xp(t)=0on some time scale T under the anti-periodic boundary conditions S_k(a,x(a))+S_k(b,x(b))=0, (0le kle n-1), where S_0(t,x(t))=x(t), S_k(t,x(t))=a_k(t)S^triangle _{k-1}(t,x(t)) for 1le kle n-1 and S_n(t,x(t))=a_n(t)[S_{n-1}^Delta (t,x(t))]^p, a_kin C_{rd}({mathbf{T}},(-infty ,0)cup (0,infty )),(1le kle n) with a_n(a)=a_n(b) and uin C_{rd}({mathbf{T}}, {mathbf{R}}), p is the quotient of two odd positive integers and a,bin {mathbf{T}} with a<b.