Increasing the charge cutoff voltage can significantly improve the capacity of lithium-ion batteries. However, the structural degradation of Ni-rich cathodes and high reactivity of electrolytes at the high-potential cathodes greatly affect the cycling stability. In this paper, a new type of cathode film-forming additive, ethyl 2-butene phosphite (EBP), is synthesized based on the molecular design of phosphite by increasing the functional group of carbon-carbon double bond and ring structure. Theoretical calculation shows that EBP has a higher HOMO level and can form a cathode electrolyte interphase (CEI) on the cathode electrode surface before the electrolyte in theory. The electrochemical performance of NCM622/Li half-cells is significantly enhanced by incorporating EBP into the electrolyte, achieving 72.52% capacity retention over 100 cycles at 0.5C. Scanning Electron Microscope (SEM), X-Ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS) and Energy Dispersive Spectroscopy (EDS) are used to characterize the morphology of the anode and cathode, revealing that EBP forms a dense and complete CEI film on the surface of the LiNi0.6Co0.2Mn0.2O2 electrode. This film effectively blocks direct contact between the electrolyte and the cathode active material, prevents the dissolution of transition metals, improves interfacial stability, and consequently enhances the high-voltage cycling performance of the battery.
Read full abstract