Substantial increases in the salinity of freshwater ecosystems has occurred around the globe from causes such as climate change, industrial operations, and the application of road deicing salts. We know very little about how plastic responses in life history traits or rapid evolution of new traits among freshwater organisms could promote stability in ecological communities affected by salinization. We performed a cohort life history analysis from birth to death with 180 individuals of a ubiquitous freshwater zooplankter to understand how life history traits are affected by exposure to two common salt types causing salinization—sodium chloride (NaCl) and calcium chloride (CaCl2)—across two environmentally relevant concentrations. We also tested if a multi-generational exposure history to high salinity altered life-history responses. We tracked and measured lifespan, time to maturation, brood size, brood interval, and body size. We found smaller brood sizes but slightly longer lifespans occurred at a low concentration of NaCl (230 mg Cl−/L). The longer lifespans led to more, albeit smaller broods, which generated a similar lifetime reproductive output compared to the no-salt control populations. At higher concentrations of NaCl and CaCl2, we found lifetime reproductive output was reduced by 23 % to 83 % relative to control populations because no tradeoff among life history traits occurred. In CaCl2, we observed shorter life spans, longer time intervals between smaller broods, and smaller body sizes leading to reduced lifetime reproductive output. We also found that a multi-generational exposure to the salt types did not convey any advantages for lifetime reproductive output. In some cases, the exposure history worsened the life history trait responses suggesting maladaptation. Our findings suggest that life history tradeoffs for freshwater species can occur in response to salinization, but these tradeoffs will largely depend on salt type and concentration, which will have implications for biodiversity and ecological stability.