Plant trait variation is thought to suppress herbivore performance, but experiments typically manipulate only a single mean level of the trait. We manipulated the mean and variation of the concentration of a plant toxin in a model plant-herbivore system across three field and greenhouse experiments. Plants with leaves painted with a higher mean toxin concentration exhibited increased fitness and resistance to herbivores; however, at high mean concentrations, variation reduced the defensive effect, while at lower mean concentrations, variation enhanced it. This reversal aligns with models that include herbivore food selectivity, but our simulations revealed that the benefits of food selectivity for herbivores were minimal. Instead, nonlinear averaging and physiological tracking effects likely drove patterns in plant fitness and resistance to herbivores. We suggest that high defense variation in plants may be a widespread defensive phenotype, but for well-defended plants, variation may inadvertently promote herbivore niche expansion.
Read full abstract