The relaxor ferroelectric crystal Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-PT), located near the morphotropic phase boundary (MPB), exhibits exceptionally high piezoelectric and electro-optic (EO) responses. Nevertheless, lower optical transparency and phase transition temperature of PMN-PT limit its optical applications. The ternary system Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) holds promise in addressing these challenges with a higher Curie temperature. Additionally, specific ferroelectric domain polarization techniques can eliminate domain scattering, substantially enhancing the transparency of the crystal. In this study, we explore the optical properties of Sm-doped PIN-PMN-PT. We achieve a 2R domain-engineered state by polarizing along the (110) direction of the crystal. The high transparency allows us to extract an effective EO coefficient of up to 431.5 pm/V from the Sm-PIN-PMN-PT crystal at the telecommunications wavelength. Second-harmonic generation (SHG) probing verified the domain-engineered state in Sm-PIN-PMN-PT. The temperature-dependent SHG reveals the ferroelectric phase transition process, laying the groundwork for studying the stability of the EO response. The Sm-PIN-PMN-PT crystal exhibits an exceptionally high EO coefficient, which is crucial for the development of enhanced EO devices with high integration and low driving voltages.