Transforming growth factor-beta (TGF-beta) is an immunosuppressive cytokine, having direct suppressive activity against conventional CD4(+) and CD8(+)T cells and natural killer cells, thereby inhibiting tumor immunosurveillance. Here, we investigated possible synergy between anti-TGF-beta (1D11) and a peptide vaccine on induction of antitumor immunity, and the mechanisms accounting for synergistic efficacy. The effect of combination treatment with a peptide vaccine and anti-TGF-beta was examined in a subcutaneous TC1 tumor model, as well as the mechanisms of protection induced by this treatment. Anti-TGF-beta significantly and synergistically improved vaccine efficacy as measured by reduction in primary tumor growth, although anti-TGF-beta alone had no impact. The number of tumor antigen-specific CTL with high functional avidity as measured by IFN-gamma production and lytic activity was significantly increased in vaccinated mice by TGF-beta neutralization. Although TGF-beta is known to play a critical role in CD4(+)Foxp3(+) Treg cells, Treg depletion/suppression by an anti-CD25 monoclonal antibody (PC61) before tumor challenge did not enhance vaccine efficacy, and adding anti-TGF-beta did not affect Treg numbers in lymph nodes or tumors or their function. Also, TGF-beta neutralization had no effect on interleukin-17-producing T cells, which are induced by TGF-beta and interleukin-6. Absence of type II NKT cells, which induce myeloid cells to produce TGF-beta, was not sufficient to eliminate all sources of suppressive TGF-beta. Finally, the synergistic protection induced by anti-TGF-beta vaccine augmentation was mediated by CD8(+) T cells since anti-CD8 treatment completely abrogated the effect. These results suggest that TGF-beta blockade may be useful for enhancing cancer vaccine efficacy.