We have studied the action of peripheral blood lymphocytes (PBLs) and intrathyroidal lymphocytes (ITLs) on the biochemical and hormonal metabolism of autologous thyrocytes cultured in follicles in a collagen gel. The production of tumour necrosis factor alpha (TNF-alpha) in culture was also measured. Thyroid tissues and lymphocytes were obtained from ten patients with Graves' disease and from five control subjects. Lymphocyte-induced cytotoxicity was evaluated in autologous thyrocytes cultured in a collagen gel by several tests; neutral red uptake, lactate dehydrogenase activity and glutathione level. Hormonal metabolism was assessed by evaluating tri-iodothyronine (T3) and total cAMP production under TSH stimulation. TNF-alpha levels were measured in supernatants after 5 days of coculture. PBLs altered biochemical metabolism, T3 synthesis and cAMP production in autologous thyroid follicles. These inhibitions were greater than those obtained with ITLs. No difference was seen between cells obtained from patients with Graves' disease and those from normal subjects. TNF-alpha levels secreted by PBLs were higher than those secreted by ITLs. The concentrations of this cytokine decreased in coculture. Significant correlations were observed between the decrease in biochemical and hormonal parameters and TNF-alpha levels. Exogenous TNF-alpha and high doses of interferon gamma inhibited follicle metabolism, especially hormone secretion. In conclusion, thyrocytes cultured in follicles provide a more sensitive model than monolayer cultures for analysis of lymphocyte-induced interactions. Lymphocytes gradually inhibit the biochemical and hormonal metabolism of autologous thyroid follicles depending on the isolation method. These alterations may be particularly attributed to TNF-alpha secreted by lymphocytes. The cytokine-induced inhibition of thyroid hormonal function apparently involves the adenylate cyclase system.