A discussion of an extended class of higher-derivative classical theories of gravity is presented. A procedure is given for exhibiting the new propagating degrees of freedom, at the full non-linear level, by transforming the higher-derivative action to a canonical second-order form. For general fourth-order theories, described by actions which are general functions of the scalar curvature, the Ricci tensor and the full Riemann tensor, it is shown that the higher-derivative theories may have multiple stable vacua. The vacua are shown to be, in general, non-trivial, corresponding to deSitter or anti-deSitter solutions of the original theory. It is also shown that around any vacuum the elementary excitations remain the massless graviton, a massive scalar field and a massive ghost-like spin-two field. The analysis is extended to actions which are arbitrary functions of terms of the form $\nabla^{2k}R$, and it is shown that such theories also have a non-trivial vacuum structure.
Read full abstract