The spatial layout of the air quality monitoring network (AQMN) is crucial for objective, accurate, and comprehensive air quality assessment. The current technical standard specified the minimum quantity requirements for air quality monitoring sites, but there were no standards to specify the spatial of monitoring sites. This study proposed a novel framework to evaluate and optimize the spatial layout of AQMN. First, this study proposed three indicators to evaluate the performance of the current AQMN. They were monitoring area repetition rate, population coverage rate, and correlations. The assessment of AQMN in Beijing–Tianjin–Hebei and surroundings areas (BTHs) showed the overall monitoring area repetition rate and population coverage rate was 81.07 % and 35.5 %, respectively, which means the current AQMN in BTHs has very high monitoring repeatability and limited population coverage. Secondly, a large-scale linear programming model was built to optimize the spatial layout and determine the spatial location of 279 newly added monitoring sites in BTHs according to the Environmental Monitoring 14th Five-Year Plan of China. The optimization results showed that the optimized AQMN covered 97 million additional people, and the population coverage rate increased to 49.5 %. The proposed framework provided a valuable tool to evaluate and optimize AQMN and could be a potential solution for developing new technical standards of AQMN.