Zeolitic imidazolate framework-8 (ZIF-8) has been extensively studied as a precursor for nitrogen-doped carbon (NC) materials due to its high surface area, tunable porosity, and adjustable nitrogen content. However, the intrinsic microporous structure of the ZIF-8 limits mass transport and accessibility of reactants to active sites, reducing its effectiveness in electrochemical applications. In this study, a soft templating approach using a triblock copolymer was used to prepare mesoporous ZIF-8-derived NC (Meso-ZIF-NC) samples. The hierarchical porous structure was investigated by varying the ratios of Pluronic F-127, NaClO4, and toluene. The resulting Meso-ZIF-NC exhibited widespread pore size distribution with an enhanced mesopore (2–50 nm) volume according to the composition of the reaction mixtures. Pt nanoparticles were uniformly dispersed on the Meso-ZIF-NC to form Pt/Meso-ZIF-NC catalysts, which presented a high electrochemical surface area and improved oxygen reduction reaction activity. The study highlights the important role of mesopore structure and nitrogen doping in enhancing catalytic performance, providing a pathway for advanced fuel cell catalyst design.
Read full abstract