We aimed to investigate the protumor mechanisms of platelets in pancreatic ductal adenocarcinoma (PDAC). Serum samples were collected from 656 PDAC patients and 3105 healthy people, and a Panx1 knockout tumor model and an adoptive platelet transfusion mouse model were established. We showed that the blood platelet counts were not significantly different between stage III/IV and stage I/II patients, while the number of the CD41+/CD62P+ platelets was significantly elevated in stage III/IV patients, indicating that CD41+/CD62P+ platelets are associated with a poor prognosis. Further analysis showed that a high level of CD41+/CD62P+ platelets was significantly correlated with microvascular invasion (P = 0.002), advanced 8th edition AJCC stage (P < 0.001), and a high CA19-9 level (P = 0.027) and independently predicted a poor prognosis for resectable I/II PDAC. Furthermore, we found significantly higher Panx1 expression in CD41+/CD62P+ platelets than in CD41+/CD62P- platelets in PDAC patients. Mechanistically, Panx1 was able to enhance IL-1β secretion in CD41+/CD62P+ platelets by phosphorylating p38 MAPK and consequently promoted the invasion and metastasis of PDAC cells. Finally, we synthesized a novel compound named PC63435 by the ligation of carbenoxolone (a Panx1 inhibitor) and PSGL-1 (a CD62P ligand). PC63435 specifically bound to CD41+/CD62P+ platelets, then blocked the Panx1/IL-1β pathway and reduced the proportion of CD41+/CD62P+ platelets, which suppressed PDAC tumor invasion and metastasis in vivo. These results demonstrated that the Panx1/IL-1β axis in CD41+/CD62P+ platelets enhanced PDAC cell malignancy and that this axis may be a promising target for PDAC therapy.
Read full abstract