Calcium ferrite nanoparticles (NPs), doped with Zinc in the range of 10–50[Formula: see text]mol%, were synthesized through a solution combustion method using citrus Limon extract as a reducing agent, followed by calcination at 500∘C. The synthesized samples are characterized with different techniques. Bragg reflections confirmed the formation of orthorhombic crystal structure. The shifting of the peak toward higher angle side is observed with increase in the dopant concentration. The surface exhibited irregular shapes and sized NPs with pores and voids in their morphology. The direct energy band gap increases from 2.91 to 2.97[Formula: see text]eV with increase in Zinc concentration. Further, magnetic and dielectric properties were carried out to know their importance in the high-frequency devices. Magnetic parameters, such as saturation magnetization (Ms), remanence (Mr), and coercivity (Hc) values, are discussed. Ms, Mr and Hc increase with increase in dopant concentration upto 30[Formula: see text]mol% and thereafter decreases. The dielectric studies revealed a decreasing dielectric constant from 2.98 to 1.84 as the dopant concentration increased. These findings suggest the potential use of these samples in memory devices and high-frequency applications.
Read full abstract