Crystallographic preferred orientations (CPOs) in olivine are widely used to infer the mechanisms, conditions, and kinematics of deformation of mantle rocks. Recent experiments on water-saturated olivine were the first to produce a complex CPO characterised by bimodal orientation distributions of both [100] and [001] axes and inferred to form by combined activity of (001)[100], (100)[001], and (010)[100] slip. This result potentially provides a new microstructural indicator of deformation in the presence of elevated concentrations of intracrystalline hydrous point defects and has implications for the interpretation of seismic anisotropy. Here, we document a previously unexplained natural example of this CPO type in a xenolith from Lesotho and demonstrate that it too may be explained by elevated concentrations of hydrous point defects. We test and confirm the hypothesis that combined (001)[100], (100)[001], and (010)[100] slip were responsible for formation of this CPO by (1) using high-angular resolution electron backscatter diffraction to precisely characterise the dislocation types present in both the experimental and natural samples and (2) employing visco-plastic self-consistent simulations of CPO evolution to assess the ability of these slip systems to generate the observed CPO. Finally, we utilise calculations based on effective-medium theory to predict the anisotropy of seismic wave velocities arising from the CPO of the xenolith. Maxima in S-wave velocities and anisotropy are parallel to both the shear direction and shear plane normal, whereas maxima in P-wave velocities are oblique to both, adding complexity to interpretation of deformation kinematics from seismic anisotropy.
Read full abstract