The ongoing COVID-19 pandemic is threatening human health globally. The development of effective drugs and vaccines against SARS-CoV-2 is hindered by the limited access to high-biosafety-level facilities. Although human coronavirus (HCoV) OC43, a low-pathogenic endemic human coronavirus, has been used as a surrogate virus for SARS-CoV-2 research, a standard technique for HCoV-OC43 culture and plaque titration has not been established. Our objective was to establish optimized culture and titration protocols for HCoV-OC43. The growth kinetics and permissibility to HCoV-OC43 infection of seven different cell lines were examined concurrently at two different temperatures, 33°C and 37°C. Cell lines exhibiting a cytopathic effect (CPE) were selected for plaque titration. No significant difference in the rate of cell growth was observed at the two temperatures tested. Interestingly, HCoV-OC43 was found not to be a high-temperature-sensitive virus, since it grew well at 37°C. Although RD, LLC-MK2, MRC-5, and HCT-8 cell lines supported virus growth with an obvious cytopathic effect and a high yield of virus after two days of infection, only RD cells were suitable for producing countable plaques. The incubation of the cells with 1.2% low-viscosity Avicel as an overlay medium at 37°C for 4 days appeared to promote clearer and sharper plaque morphology. However, further optimization of the plaque titration protocol is still required due to the continued observation of plaque size variation and hazy zones. We propose a cost-effective protocol for HCoV-OC43 culture and plaque titration that can be implemented at a standard conventional temperature without the need for additional special equipment.