Abstract

BackgroundMosquito-borne diseases (MBDs) cause a significant proportion of the global infectious disease burden. Vector control remains the primary strategy available to reduce the transmission of MBDs. However, long-term, wide-scale and large-scale traditional chemical pesticide application has caused significant and increased negative effects on ecosystems and broader emerging insecticide resistance in vectors; therefore, the development of a novel alternative approach is urgently needed. Mosquito densoviruses (MDVs) are entomopathogenic viruses that exhibit a narrow host range and multiple transmission patterns, making MDVs a great potential bioinsecticide. However, the application process has been relatively stagnant over the past three decades. The major obstacle has been that viruses must be produced in mosquito cell lines; therefore, the production process is both expensive and time-consuming.MethodsIn our study, two wild-type (wt) MDVs, AaeDV and AalDV-3, and a recombinant rAaeDV-210 were used to infect the Aag2 and C6/36 mosquito cell lines and the 1st–2nd-instar and 3rd–4th-instar larvae of Ae. albopictus, Ae. aegypti and Cx. quinquefasciatus. Viral titers and yields in cells, media, larvae and rearing water and total viral yield were evaluated. Three kinds of virus displayed higher maximum virus titers in vivo than in vitro, and they displayed higher maximum viral yields in rearing water.ResultsThe three viruses displayed higher total maximum viral yields in C6/36 cells than in Aag2 cells. The three viruses displayed higher total maximum viral yields in Aedes mosquitoes than in Culex mosquitoes. Higher viral yields were produced by 1st–2nd-instar larvae compared to 3rd–4th-instar larvae. The recombinant viruses did not display significantly lower yields than wt viruses in nearly all samples. In summary, by using 100 1st–2nd-instar Aedes mosquito larvae in 200 ml of rearing water, more than 1013 genome equivalents (geq) MDV yield can be obtained.ConclusionsConsidering the lower production cost, this in vivo method has great potential for the large-scale production of MDVs. MDVs exhibit promising prospects and great potential for mosquito control in the future.

Highlights

  • Mosquito-borne diseases (MBDs) cause a significant proportion of the global infectious disease burden

  • Entomopathogenic viruses have been identified in more than one thousand species from at least 13 different insect orders [5]. These insect pathogenic viruses can be divided into two categories: those that produce occlusion bodies in the insect host cells are occluded viruses (OVs), whereas those that are not occluded in protein bodies are no-occluded viruses (NOVs) [6]

  • Mosquito cell transfection and virus production pUCA and pUCP were the infectious clones of Ae. aegypti densoviruses (AaeDV) (GenBank: M37899) and Ae. albopictus densoviruses-3 (AalDV-3) that contained the full genomic DNA of AaeDV (3981 nt) and AalDV-3 (4006 nt), respectively, and were kindly provided by Professor Erica Suchman and Jonathan Carlson (Colorado State University, Fort Collins, CO, USA). pUCA-210 is an infectious clone of non-defective recombinant densovirus vectors that can express endogenous miRNA-210 in Ae. albopictus

Read more

Summary

Introduction

Mosquito-borne diseases (MBDs) cause a significant proportion of the global infectious disease burden. Vector control remains the primary strategy available to reduce the transmission of MBDs. long-term, wide-scale and large-scale traditional chemical pesticide application has caused significant and increased negative effects on ecosystems and broader emerging insecticide resistance in vectors; the development of a novel alternative approach is urgently needed. Entomopathogenic viruses have been identified in more than one thousand species from at least 13 different insect orders [5] These insect pathogenic viruses can be divided into two categories: those that produce occlusion bodies in the insect host cells are occluded viruses (OVs), whereas those that are not occluded in protein bodies are no-occluded viruses (NOVs) [6]. The main NIVs in mosquitoes are mosquito iridoviruses (MIVs) (family Iridoviridae, genus Chloriridovirus) and densoviruses (DVs) [9]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call