Background Glycosylation is an important posttranslational modification of proteins influencing protein folding, stability and regulation of the biological activity. The sialyl mojety (sialic acid, 5-N-acetylneuramic acid) is usually exposed at the terminal position of N-glycosylation and therefore, a major contributor to biological recognition and ligand function, e.g. IgG featuring terminal sialic acids were shown to induce less inflammatory response and increased serum half-life. The biosynthesis of sialyl conjugates is controlled by a set of sugar-active enzymes including sialyltransferases which are classified as ST3, ST6 and ST8 based on the hydroxyl position of the glycosyl acceptor the Neu5Ac is transferred to [1]. The ST6 family consists of 2 subfamilies, ST6Gal and ST6GalNAc. ST6Gal catalyzes the transfer of Neu5Ac residues to the hydroxyl group in C6 of a terminal galactose residue of type 2 disaccharide (Galb1-4GlcNAc). To our knowledge, the access to recombinant ST6GalI for therapeutic applications is still limited due to low expression and/or poor activity in various hosts (Pichia pastoris, Spodoptera frugiperda and E. coli). The present study describes the high-yield expression of two variants of human beta-galactoside alpha-2,6 sialyltransferase 1 (ST6Gal-I, EC 2.4.99.1; data base entry P15907) by transient gene expression in HEK293 cells with yields >100 mg/L featuring distinct mono(G2 +1SA) as well as bi(G2+2SA) sialylation activity. Materials and methods Two N-terminally truncated fragments of human ST6Gal-I (delta89, residues 89-406, and delta108, residues 109-406) were designed for transient gene expression (TGE): Instead of the natural leader sequence and N-terminal residues, both ST6Gal-I coding regions harbor the Erythropoietin (EPO) signal sequence in order to ensure correct processing of the polypeptides by the secretion machinery. Following cloning into pM1MT, expression of the ST6Gal-I coding sequences is under control of a hCMV promoter followed by an intron A. Sialyltransferase assays: 1. Asialofetuin was used as acceptor and CMP-9F-NANA as donor substrate. Enzymatic activity was determined by measuring the transfer of 9F-NANA to asialofetuin. 2. Recombinant humanized IgG1 and IgG4 monoclonal antibodies (mabs), characterized as G2+0SA, as well as desialylated EPO were used as targets in sialylation experiments (30 μg enzyme/300 μg target protein). Both enzyme variants of ST6Gal-I (delta89 and delta108) were used under identical reaction conditions and the sialylation status was analyzed by mass spectrometry.
Read full abstract