The development of GaN and SiC devices has been the subject of intensive research in recent years, and significant progress has been made in terms of device performance, reliability, and cost-effectiveness. However, there are still challenges to be overcome before these materials can become mainstream in power electronics. This review paper compares the properties and performance of SiC and GaN power devices, which are both wide-bandgap semiconductors that offer superior performance compared to traditional silicon-based devices. The paper discusses the material properties of SiC and GaN, including their bandgaps, thermal conductivities, breakdown voltages, and on-state resistances. The paper also compares the switching speeds and costs of SiC and GaN devices, as well as the manufacturing technologies used for these devices. The paper concludes that SiC devices are generally more suitable for high-temperature and high-voltage applications, while GaN devices are more suitable for high-frequency and high-power density applications. The review paper provides insights into the advantages and disadvantages of SiC and GaN power devices and highlights areas for future research.
Read full abstract