Abstract. In recent years, satellite remote sensing has been increasingly used in the long-term observation of ozone (O3) precursors and its formation regime. In this work, formaldehyde (HCHO) data from Ozone Monitoring Instrument (OMI) were used to analyze the temporal and spatial distribution of HCHO vertical column densities (VCDs) in Shanghai from 2010 to 2019. HCHO VCDs exhibited the highest value in summer and the lowest in winter, the high VCD being concentrated in western Shanghai. Temperature largely influences HCHO by affecting the biogenic emissions and photochemical reactions, and industry was the major anthropogenic source. The satellite-observed formaldehyde-to-nitrogen dioxide ratio (FNRSAT) reflects that the O3 formation regime had significant seasonal characteristics and gradually manifested as a transitional ozone formation regime dominating in Shanghai. The uneven distribution in space was mainly reflected in the higher FNRSAT and surface O3 concentration in suburban areas. To compensate for the shortcoming of FNRSAT that it can only characterize O3 formation around satellite overpass time, correction of FNRSAT was implemented with hourly surface FNR and O3 data. After correction, the O3 formation regime showed the trend moving towards being VOC-limited in both time and space, and the regime indicated by FNRSAT can better reflect O3 formation for a day. This study can help us better understand HCHO characteristics and O3 formation regimes in Shanghai and also provide a method to improve FNRSAT for characterizing O3 formation in a day, which will be significant for developing O3 prevention and control strategies.
Read full abstract