AbstractTo explore sea level transgression in low-lying inland areas and its possible influence on prehistoric cultures, we investigated the physical and geochemical features of 20-m-long sedimentary cores from the previously seawater-filled Daesan Basin located in the middle reach of the present Nakdong River in Korea as proxies for seawater transgression deep inland areas due to Holocene sea level rise. Based on the relationships among grain size, total sulfur content (TS%), and carbon/sulfur (C/S) ratio, the first transgressive event was detected at ca. 8500 cal yr BP, caused by seawater influx along the present Nakdong River. Higher TS% (0.8–1%) and interbedded fossil oysters at 8000–6000 cal yr BP indicate marine environments, supporting a paleo-Daesan Bay with water depth of ~10–8 m. The common peaks in TS%, in both inland paleo-Daesan Bay and a present coastal area (Suncheon Bay) in southern Korea (e.g., at 3200 and 4700 cal yr BP), may indicate intervals of higher salinity, which suggests simultaneous responses to changes in sea level or hydroclimate. The duration of marine environment (paleo-Daesan Bay) in the remote inland from ca. 8000–3200 cal yr BP provides an analog for inland paleo-bay studies in East Asia.
Read full abstract