Huntington's disease (HD) is a rare and progressive neurodegenerative disorder caused by polyglutamine (poly-Q) mutations of the huntingtin (HTT) gene resulting in chorea, cognitive, and psychiatric dysfunctions. Being a monogenic condition, reducing the levels of the mutated huntingtin protein (mHTT) holds promise as an effective therapeutic approach. GPR52, an orphan G-protein coupled receptor (GPCR), enriched in the striatum, is a novel target for slowing down the progression of HD by lowering the mHTT levels. Therefore, the study focuses on identifying potent small-molecule inhibitors for GPR52 using a combination of robust high-throughput virtual screening (HTVS) and pharmacokinetics profiling followed by fast pulling of ligand (FPL) and umbrella sampling (US) simulations. Initially, screening a library of 2,36,545 compounds was done against the binding pocket of GPR52. Based on binding affinity, stereochemical and non-bonded interactions, and pharmacokinetic profiling, 50 compounds were shortlisted. Selected hit compounds 1, 2, and 3 were subjected to FPL simulations with applied external bias potential to investigate their unique dissociation pathways and intermolecular interactions over time. Subsequently, the US simulations were performed on the selected hit compounds to estimate their binding free energy (ΔG). The analysis of the trajectories obtained from simulations revealed that the residues TYR34, TYR185, GLY187, ASP188, ILE189, SER299, PHE300, and THR303 within the active site of GPR52 were significant for efficient ligand binding through the formation of various hydrogen bond interactions and hydrophobic contacts. Out of the three hit compounds, compound 3 had the lowest ΔG of - 20.82 ± 0.44kcal/mol. The study identified compounds 1, 2, and 3 as potential molecules that can be developed as GPR52 inhibitors holding promise for lowering mHTT levels.