The effects of high hydrostatic pressure (HHP) treatment (100-600 MPa for 10-60 min) and thermal treatment (boiling for 10-60 min) on oligosaccharides, pinitol, and soyasapogenol A as taste ingredients in soybean (Glycine max (L.) Merr.) (cv. Yukihomare) were evaluated. Additionally, soybean-derived fatty acids such as α-linolenic acid, linoleic acid, oleic acid, palmitic acid, and stearic acid in pressurized soybeans were quantitatively analyzed. Sucrose, stachyose, and raffinose concentrations were decreased in all tested pressure and time combinations; however, pinitol concentrations were increased by specific pressure and time combinations at 100-400 MPa for 10-60 min. While the soyasapogenol A content in boiled soybeans decreased with increasing boiling time, that of pressurized soybeans was altered by specific pressure and time combinations. At the lower pressure and shorter time combinations, the essential fatty acids such as α-linolenic acid and linoleic acid showed higher contents. Stearic acid and oleic acid contents of pressurized soybeans increased at mild pressure levels (300-500 MPa). In contrast, the combination of higher pressure and longer time results in lower essential fatty acid contents. Non-thermal-pressurized soybeans have the potential to be a high-value food source with better taste due to the enrichment of low molecular weight components such as pinitol, free amino acids, and the reduction of isoflavones and Group A soyasapogenol.
Read full abstract