Abstract

Although many strategies have been reported for modified poly(p-phenylene benzobisoxazole) (PBO) fiber surfaces, the absence of approaches with the potential of applications in industries limits the further applications of the fibers in a wide field. Herein, PBO fibers are modified by heat treatment combined with corona discharge treatment, which is a continuous industrialized method. Then, the surface morphology, wettability, orientation, and crystallinity of the PBO fibers are characterized in detail. Systematic experiments demonstrate that the high thermal treatment can improve the orientation and crystallization degree of the fibers, as well as the degradation resistance. In addition, owing to the synergistic mechanism of ozone and high-frequency shock, the corona discharge treatment increases the contents of O and N elements on the surfaces, which improves the superficial properties of the fibers. Based on the modification of PBO fibers, the inter-laminar shear strength between the fiber and the resin for the composite increases to 94.8%, and the tensile strength of the composite increases to 29.2%, compared to those using untreated fibers. In general, the proposed modification strategy not only easily improves the surface properties and the mechanical properties of composites but also can be used with great potential in industrial production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call